环球热点评!超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2Former
极市导读
【资料图】
本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效,称为 Conv2Former。作者在 ImageNet 分类、目标检测和语义分割方面的实验也表明,Conv2Former 比以前基于 CNN 的模型和大多数基于 Transformer 的模型表现得更好。>>加入极市CV技术交流群,走在计算机视觉的最前沿
本文目录1 Conv2Former:Transformer 风格的卷积网络视觉基线模型1 Conv2Former:Transformer 风格的卷积网络视觉基线模型(来自南开大学,字节跳动)1.1 Conv2Former 论文解读1.1.1 背景和动机1.1.2 卷积调制模块1.1.3 Conv2Former 整体架构1.1.4 实验结果
论文名称:Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition
论文地址:https://arxiv.org/pdf/2211.11943.pdf
1.1.1 背景和动机以 VGGNet、Inception 系列和 ResNet 系列为代表的 2010-2020 年代的卷积神经网络 (ConvNets) 在多种视觉任务中取得了巨大的进展,它们的共同特点是顺序堆叠多个基本模块 (Basic Building Block),并采用金字塔结构 (pyramid network architecture),但是却忽略了显式建模全局上下文信息的重要性。SENet 模块系列模型突破了传统的 CNN 设计思路,将注意力机制引入到 CNN 中以捕获远程依赖,获得了更好的性能。
自从 2020 年以来,视觉 Transformer (ViTs) 进一步促进了视觉识别模型的发展,在 ImageNet 图像分类和下游任务上表现出比最先进的 ConvNets 更好的结果。这是因为与只进行局部建模的卷积操作相比,Transformer 中的自注意力机制能够对全局的成对依赖进行建模,提供了一种更有效的空间信息编码方法。然而,在处理高分辨率图像时,自注意力机制导致的计算成本是相当大的。
为了解决这个问题,一些 2022 年经典的工作试图回答:如何借助卷积操作,打造具有 Transformer 风格的卷积网络视觉基线模型?
比如 ConvNeXt[1]:将标准 ResNet 架构现代化,并使用与 Transformer 相似的设计和训练策略,ConvNeXt 可以比一些 Transformer 表现得更好。
从原理和代码详解FAIR去年的惊艳之作:全新的纯卷积模型ConvNeXt
再比如 HorNet[2]:通过建模高阶的相互作用,使得纯卷积模型可以做到像 Transformer 一样的二阶甚至更高的相互作用。
精度超越ConvNeXt的新CNN!HorNet:通过递归门控卷积实现高效高阶的空间信息交互
再比如 RepLKNet[3],SLaK[4]:通过 31×31 或者 51×51 的超大 Kernel 的卷积,使得纯卷积模型可以建模更远的距离。
又对ConvNets下手了!详解SLaK:从稀疏性的角度将卷积核扩展到 51×51
到目前为止,如何更有效地利用卷积来构建强大的 ConvNet 体系结构仍然是一个热门的研究课题。
1.1.2 卷积调制模块本文的关键就是本小节介绍的卷积调制模块。如下图1所示, 对于传统的 Self-attention, 给定一个序列长度为
式中,
为了简单起见,这里省略了 scale factor,自注意模块的计算复杂度随着序列长度N的增加呈二次增长,带来了更高的计算代价。
在卷积调制模块中, 不通过2式计算相似度得分矩阵
式中,
优势: 卷积调制模块利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效。
ConvNeXt 表明,将 ConvNets 的核大小从3扩大到7可以提高分类性能。然而,进一步增加 Kernel 的大小几乎不会带来性能上的提升,反而会在没有重新参数化的情况下增加计算负担。但作者认为,使 ConvNeXt 从大于 7×7的 Kernel Size 中获益很少的原因是使用空间卷积的方式。对于 Conv2Former,当 Kernel Size 从 5×5 增加到 21×21 时,可以观察到一致的性能提升。这种现象不仅发生在 Conv2Former-T (82.8→83.4) 上,也发生在参数为80M+ 的 Conv2Former-B (84.1→84.5) 上。考虑到模型效率,默认的 Kernel Size 大小可以设置为 11×11。
权重策略的优化: 注意这里作者直接将深度卷积的输出作为权重,对线性投影后的特征进行调制。Hadamard 积之前既没有使用激活层,也没有使用归一化层 (例如 Sigmoid 或 LN 层),如果像 SE 模块那样加一个 Sigmoid 函数,会使性能降低 0.5% 以上。
1.1.3 Conv2Former 整体架构如下图3所示,与ConvNeXt 和 Swin Transformer 相似,作者的 Conv2Former 也采用了金字塔架构。总共有4个 Stage,每个 Stage 的特征分辨率依次递减。根据模型大小尺寸,一共设计了5个变体:Conv2Former-N,Conv2Former-T, Conv2Former-S, Conv2Former-B,Conv2Former-L。
当可学习参数数量固定时,如何安排网络的宽度和深度对模型性能有影响。原始的 ResNet-50 将每个 Stage 的块数设置为 (3,4,6,3)。ConvNeXt-T 按照 Swin-T 的模式将 Block 数之比更改为 (3,3,9,3),并对较大的模型将 Block 数之比更改为 (1,1,9,1)。Conv2Former 的设置如下图4所示。可以观察到,对于一个小模型 (参数小于30M),更深的网络表现更好。
ImageNet-1K 实验分为两种,一种是直接在 ImageNet-1K 上面训练和验证,另一种是先在 ImageNet-22K 上预训练,再在 ImageNet-1K 上微调和验证。
ImageNet-1K 实验设置
数据集:ImageNet-1K 训练 300 Epochs,ImageNet-1K 验证。
优化器: AdamW, lr
ImageNet-22K 实验设置
数据集:ImageNet-22K 预训练 90 Epochs,ImageNet-1K 微调 30 Epochs,ImageNet-1K 验证。
如下图5所示是 ImageNet-1K 实验结果。对于小型模型 (< 30M),与 ConvNeXt-T 和 Swin-T 相比,Conv2Former 分别有 1.1% 和 1.7% 的性能提升。即使 Conv2Former-N 只有 15M 参数和 2.2G FLOPs,其性能也与具有 28M 参数和 4.5G FLOPs 的 SwinT-T 相同。对于其他流行的模型,Conv2Former 也比类似模型尺寸的模型表现更好。Conv2Former-B 甚至比 EfficientNetB7 表现得更好 (84.4% vs . 84.3%),后者的计算量是 Conv2Former 的两倍 (37G vs. 15G)。
如下图6所示是 ImageNet-22K 的实验结果。作者遵循 ConvNeXt 中使用的设置来训练和微调模型。与 ConvNeXt 的不同变体相比,当模型尺寸相似时,Conv2Former 都表现得更好。此外,我们可以看到,当在更大的分辨率384×384 上进行微调时,Conv2Former-L 获得了比混合模型 (如 CoAtNet 和 MOAT) 更好的结果,Conv2Former-L 达到了 87.7% 的最佳结果。
如下图8所示是关于卷积核大小的消融实验结果。在 大小增加到 21 × 21 之前,性能增益似乎已经饱和。这个结果与 ConvNeXt 得出的结论截然不同,ConvNeXt 得出的结论是,使用大于 7×7 的 Kernel 不会带来明显的性能提升。
消融实验1:卷积核大小
如下图8所示是关于卷积核大小的消融实验结果。在 Kernel Size 增加到 21 × 21 之前,性能增益已经饱和。这个结果与 ConvNeXt 得出的结论截然不同,ConvNeXt 得出的结论是,使用大于 7×7 的 Kernel Size 不会带来明显的性能提升。这表明 Conv2Former 的做法能比传统方式更有效地利用大 Kernel 的优势。
消融实验2:不同融合策略的影响
如下图8, 9所示是关于不同融合策略影响的消融实验结果。除了上述两种融合策略外, 作者还尝试使用其他方法来融合特征映射, 包括在
直筒架构实验结果
遵循 ConvNeXt 的做法,作者也训练了 Conv2Former 的直筒架构 (Isotropic Models) 版本,结果如下图9所示。作者将 Conv2Former-IS 和 Conv2Former-IB 的块数设置为18,并调整通道数以匹配模型大小。字母 "I" 表示直筒架构,可以看到,对于 22M 参数左右的小型模型,Conv2Former-IS 比 DeiT-S 的表现要好得多。当将模型尺寸放大到 80M+ 时,Conv2Former-IB 达到了 82.7% 的 Top-1 Accuracy,这也比 ConvNeXt-IB 高 0.7%,比 DeiT-B 高0.9%。
目标检测实验结果
如下图10所示是不同骨干网络,以 Mask R-CNN 为检测头和 Cascade Mask R-CNN 为实例分割头在 COCO 数据集的实验结果。训练策略遵循 ConvNeXt。对于小模型,使用 Mask R-CNN 框架时,Conv2Former-T 比 SwinT-T 和 ConvNeXt-T 获得了约 2% AP 的改进。
语义分割实验结果
如下图11所示是不同骨干网络,以 UperNet 为分割头在 ADE20k 上的实验结果。对于不同尺度的模型,我们的Conv2Former可以优于Swin Transformer和ConvNeXt。
总结本文试图回答:如何借助卷积操作,打造具有 Transformer 风格的卷积网络视觉基线模型。本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效。最终的模型称为 Conv2Former,它通过只使用卷积和 Hadamard 积,简化了注意力机制。卷积调制操作是一种利用大核卷积的更有效的方法。作者在 ImageNet 分类、目标检测和语义分割方面的实验也表明,Conv2Former 比以前基于 CNN 的模型和大多数基于 Transformer 的模型表现得更好。
参考
^A ConvNet for the 2020s^HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions^Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs^More ConvNets in the 2020s: Scaling up Kernels Beyond 51 × 51 using Sparsity公众号后台回复“CNN100”,获取100 篇 CNN 必读的经典论文资源下载
极市干货
技术干货:数据可视化必须注意的30个小技巧总结|如何高效实现矩阵乘?万文长字带你从CUDA初学者的角度入门实操教程:Nvidia Jetson TX2使用TensorRT部署yolov5s模型|基于YOLOV5的数据集标注&训练,Windows/Linux/Jetson Nano多平台部署全流程#极市平台签约作者#
科技猛兽
知乎:科技猛兽
清华大学自动化系19级硕士
研究领域:AI边缘计算 (Efficient AI with Tiny Resource):专注模型压缩,搜索,量化,加速,加法网络,以及它们与其他任务的结合,更好地服务于端侧设备。
作品精选
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读)轻量高效!清华智能计算实验室开源基于PyTorch的视频 (图片) 去模糊框架SimDeblur投稿方式:添加小编微信Fengcall(微信号:fengcall19),备注:姓名-投稿△长按添加极市平台小编觉得有用麻烦给个在看啦~标签:

文化和艺术有什么区别与联系?这篇文章告诉你
2022-09-22

进入了发展快车道 冷链行业市场规模正在快速膨胀
2022-03-21

行业正站在风口 数字化时代在为传统的自行车产业赋能
2022-03-21

以做强实体经济支撑为重点 成都单个项目年度计划投资同比提升
2022-03-21

拥有多个国际赛事的直播版权 广州游戏电竞企业业绩向好
2022-03-21

投诉量激增 直播带货存在这么多问题的主要原因是什么?
2022-03-21

工作专班深入到各企业 春寒料峭挡不住松原市施工热情
2022-03-21

引导企业向提供“产品+服务”转变 湖南加快智能农机服务化转型
2022-03-21

创新平台建设和科技成果转化 德州加大力度重奖创新
2022-03-21

潜在风险进一步放大 商品房现房销售已是大势所趋
2022-03-21
进入了发展快车道 冷链行业市场规模正在快速膨胀
行业正站在风口 数字化时代在为传统的自行车产业赋能
以做强实体经济支撑为重点 成都单个项目年度计划投资同比提升
拥有多个国际赛事的直播版权 广州游戏电竞企业业绩向好
投诉量激增 直播带货存在这么多问题的主要原因是什么?
工作专班深入到各企业 春寒料峭挡不住松原市施工热情
引导企业向提供“产品+服务”转变 湖南加快智能农机服务化转型
创新平台建设和科技成果转化 德州加大力度重奖创新
潜在风险进一步放大 商品房现房销售已是大势所趋
有序复工复产 1—2月份工业经济发展新动能持续增强
多层次高频调度 1至2月河北省工业运行先行指标稳中有增
以车路协同为基础 智能交通推动城市交通绿色高质量发展
人才短板成为制约产业链高质量发展的关键节点
通过技术手段整合调配供给资源 家政行业不断提质扩容
强化产业链深层次合作 加强重大装备国产化“一条龙”模式构建
如何进一步提升纳税人缴费人的减税降费获得感?
探索建设大数据及网络安全示范试点城市有哪些积极意义?
对制造业中小微企业实施缓缴税费政策有哪些积极意义?
进一步增强自我保护意识 消费者需注意辨别谨慎消费
将“走出去”变“请进来” 西安贸易产业转移承接作用不断得到增强
厦门应如何融入“数字中国”的重大战略发展大局?
江苏省如何不断满足老人日益增长的养老服务需求?
建设一体化的职业健康信息管理平台 天津职业人群保障加强
潜力持续释放 1—2月乡村消费品市场恢复略好于城镇
直接对接社会化服务 楼宇调解室将整体提升青岛劳动争议水平
成功化解纠纷11.47万件 银保监会服务质量日趋提高
春雷响百虫出 惊蛰文化在其他方面有了进一步发展
青绿山水画在古代山水画发展史上有着怎样的影响与地位?
开播即爆款 “文化类节目收视率低”这一固有印象被推翻


- 环球热点评!超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2Former
- 环球看热讯:《烈焰之武庚纪》任嘉伦邢菲是二次合作吗?
- 即时焦点:构建软塑包装全链条循环体系
- 信息:Go定时器的三种实现方式
- 【全球独家】俄媒:首架全新建造的图-160M战略轰炸机将于今年内交付
- 世界热议:滨海投资(02886):泰达控股完成泰达香港全部股份转让予渤海国资
- 每日资讯:银河电子董秘回复:公司目前正努力克服疫情影响,保证正常生产经营
- 天天要闻:涨停雷达:旷达科技:公司抗病毒面料已研发成功在针对甲形流感病毒H1N1方面的抗病毒活性率达99.9% 旷达科技触及涨停
- 全球观热点:广尔数码股东郭平通增持175.99万股权益变动后直接持股比例为10%
- 环球今日讯!禾昌聚合(832089)12月22日游资资金净卖出22.60万元
- 涵盖了109件真迹作品 凯斯·哈林展览将持续至6月13日
- 带有一点自信的自嘲 “隔路”是另一种味道的“凡尔赛”
- 与文渊阁前后呼应 “何以中国”特展隆重致敬文化大成
- 严重者可造成暂时性失明 享受冰雪运动要注意眼睛的健康防护
- 种类繁多让人眼花缭乱 选购牛奶时需要重点关注什么?
- 网课让孩子感到不安焦虑怎么办?八问八答回应广大家长关切
- 循环系统很容易受到刺激 “倒春寒”期间老人该如何做?
- 青少年患者睡眠问题日趋增加 9条建议为孩子助眠
- 我国肥胖人群正逐年递增 不良饮食习惯是重要诱因
- 如何减少噪声对听力的损伤?这份耳部和听力保健小贴士请收好
- 强化住房限购措施 西安限购限售范围进一步扩大
- 多种方式增加供给 进一步降低新市民和青年人的居住成本
- 预计9月下旬海口可实现安居房申请网上办理
- 政策调控力度持续升级 8月百城二手房市场均价止涨转跌
- 8月中国新房找房热度依然保持平稳 环比微涨0.2%
- 进一步加强商品房销售价格备案管理 今年全国楼市调控刷新历史纪录
- 西安第二批集中供地中28宗为现场拍卖方式出让
- 细分化需求得到释放 房屋居住的属性越发凸显
- 佛山顺德龙江近日挂牌商住地起拍价约19.88亿元
- 青岛市4宗地竞品质抽签结果出炉 地溢价均约15%
- 坚持政策支持、多方参与 浙江版保障性租赁住房明确新增比例目标
- 简化审批流程 武汉将实现房源申请配租全程网上办
- 追剧为何上瘾?你追的不是剧,而是及时满足的快感
- 11月谣言在“身边”,别信这些无稽之谈
- 不会融化的“果冻冰块”研制成功 有望改变食物冷藏方式
- 对症下药“十年痼疾”,“茶博士”帮老茶园重焕生机
- 既促进生产又保护生态他用古代农耕智慧造福现代农业
- 老人被野猪咬伤 打猎者赔了5万多
- 老鼠油治烫伤致孩子进ICU 害人偏方为何被奉为灵丹妙药
- “逆行”考研=集体滑落?这结论该慎下
- 试行“家长学校”“持证上岗”?可以引导但不宜“法外加槛”
- “布鞋奶奶”走了 曾亲自给部队子弟兵送鞋40年
- 北京道路停车支持ETC无感支付
- 北京五道口增设行人信号灯四面全绿时段
- “法不责众”不是健走团“占道”的护身符
- 北京:建议研考考生考前14天在京备考
- 北京市2022年民生实事邀市民投票
- 将“干部”当店名 这个口子不能开
- 北京:242辆京牌小客车参加司法处置
- 吸氢气就能抗癌又防衰?最新“科学”流言榜发布
- 北京:保障在校体育锻炼1小时获较高认可
- 世界艾滋病日:关于艾滋病,我想和你聊聊
- 故宫博物院2022年年票紧急停售 恢复销售时间将另行公告
- 云南磨憨边检站中老边境缴毒逾4公斤
- 内蒙古满洲里公布55例本土确诊病例行动轨迹
- 满洲里高风险地区增至6个 中国内地新冠疫苗接种超25亿剂次
- 广州长隆举办“猿猴特展” 稀有“夜猴”首秀
- 四川绵竹首次拍摄到野生大熊猫标记行为 划定领地或吸引异性
- 福建福州海警局利用无人机成功查获一起非法采矿案
- 北京海关今年已查获2700余批次涉嫌侵权商品